

Robust Constrained Control for Driver-Automation Shared Driving of Intelligent Vehicles

<u>Anh-Tu Nguyen</u>, Chouki Sentouh and Jean-Christophe Popieul LAMIH UMR 8201 CNRS - University of Valenciennes, France

> **Journées Automatique et Automobile** Amiens, France, October 18-19, 2017

Outline

O Context and challenges

2 Human-in-the-loop control design

- System modeling
- Description of the proposed method
- Control design
- **3** Illustrative experimental results
- **4 Concluding Remarks**

Context

- Human drivers are responsible 90% road accidents^[1]
- Automation can help to reduce the workload and the human errors
- Full automation of vehicle could be possible!

Google Driverless Car

Context

- Why not full automation of the driving task?
 - <u>Unpredictable</u> environments (outside the operating range of the automation)

Loss of GPS signal

Presence of undetected obstacle

Absence of markings on the ground

Human capacities (creativity and insight) are still needed!

Challenging Issue

• Human-machine system

Question: "How could we combine the best of the human and machine?"

Principe of cooperative control^[1]

[1] Abbink and al., 2012

Outline

• Context and challenges

2 Human-in-the-loop control design

- System modeling
- Description of the proposed method
- Control design
- **3** Illustrative experimental results
- **4** Concluding Remarks

Vehicle Modeling for Control Design

Three types of system dynamics^[1]

• Vehicle dynamics (or linear bicycle model)

$$\begin{bmatrix} \dot{\beta} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} \beta \\ r \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \delta + \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} f_w$$

• Road-vehicle positioning

$$\begin{cases} \dot{y}_L = v_x \beta + l_s r + v_x \psi_L \\ \dot{\psi}_L = r - v_x \rho_r \end{cases}$$

• Steering system

$$\ddot{\delta}_d = \frac{T_{s\beta}}{I_s}\beta + \frac{T_{sr}}{I_s}r - \frac{T_{s\beta}}{R_sI_s}\delta_d - \frac{B_s}{I_s}\dot{\delta}_d + \frac{1}{I_s}(T_c + T_d)$$

[1] Rajamani, 2012

Vehicle Modeling for Control Design

Road-vehicle control-based model

- ① Lateral vehicle dynamics
- ② Lane keeping dynamics
- ③ Steering system model

 $x = A \downarrow v (v \downarrow x) x + B \downarrow u (T \downarrow c + T \downarrow d) + B \downarrow w (v \downarrow x) w$

- System state $x = [v \downarrow y \ r \ \psi \downarrow L \ y \downarrow L \ \delta \ \delta] \uparrow \top$
- Control input $v=T\downarrow c+T\downarrow d$
- System disturbance
 w=[■f↓w &p↓r]

 $v \downarrow y$ lateral speedryaw rate $y \downarrow L$ lateral offset $\psi \downarrow L$ heading error δ steering angle δ steering speed

Vehicle Modeling for Control Design

• Road-vehicle model

 $x = A \downarrow v (v \downarrow x) x + B \downarrow u (T \downarrow c + T \downarrow d) + B \downarrow w (v \downarrow x) w$

 \Rightarrow Conflict issue

• Simplified driver model^[1]

 $T \downarrow d = K \downarrow d1 \ \theta \downarrow near + K \downarrow d2 \ \theta \downarrow far$

• Driver tracking performance $\theta \downarrow near = y \downarrow L / v \downarrow x T \downarrow p + \psi \downarrow L$ • Driver anticipatory behaviors

 $\theta \downarrow far = \theta \downarrow 1 \ v \downarrow y + \theta \downarrow 2 \ r + \theta \downarrow 3 \ \delta$

 \Rightarrow Driver torque = linear combination of system states

• Driver-in-the-loop-vehicle model

 $x = A \downarrow v x + B \downarrow u (T \downarrow c + T \downarrow d) + B \downarrow w w$

Driver model

 $x = Ax + B \downarrow u T \downarrow c + B \downarrow w w$

[1] Sentouh et al., 2009

Shared Driving Control Strategy

• Need for assistance w.r.t. driver load and performance

U-shape function^[2]

Principe of cooperative control^[1]

- ⇒ The assistance should relieve the driver in underload and overload conditions.
- \Rightarrow The driver is always in the control loop.
- ⇒ There should have a continuous feedback between the automation system and the driver

• Proposed solution

 $T \downarrow c = \mu(\theta \downarrow d) u$

 $\theta \downarrow d$: driver activity variable

u: fictive torque to be designed

[2] Flemish and al., 2010

[1] Abbink and al., 2012

Shared Driving Control Strategy

• Need for assistance w.r.t. driver load and performance

• Control-based model

 $x = Ax + B \downarrow u \ T \downarrow c + B \downarrow w \ w$

$$T\downarrow c = \mu(\theta \downarrow d) u$$

Takagi-Sugeno model-based control technique

 $x = A(\mu(\theta \downarrow d), v \downarrow x) x + B \downarrow u (\mu(\theta \downarrow d)) u + B \downarrow w (v \downarrow x) w$

Takagi-Sugeno Model-Based Control Design

• Takagi-Sugeno modeling^[1] for quasi-LPV systems

$$\blacksquare x = A(\theta)x + B \downarrow u(\theta) \text{sat}(u) + B \downarrow w(\theta)w z = (\theta)x \blacksquare B \downarrow z \underline{X} \theta \not \downarrow 1 r = \eta \downarrow i(\theta)(A \downarrow i y \neq B \downarrow j \uparrow (\theta) \text{sat}(\theta) = 0$$

- *r*: number of linear models
- Membership functions $\eta \downarrow i(\theta) \ge 0$, $\sum i = 1 \uparrow r \equiv \eta \downarrow i(\theta) = 1$
- Takagi-Sugeno fuzzy system = convex combination of linear subsystems

[1] Tanaka and Wang, 2001

• PDC (Parallel Distributed Compensation) control law^[1]

 $u=\sum_{i=1}^{n} \ln(\theta) K \downarrow t \Rightarrow$ Same membership functions as T-S model

- System constraints $u \downarrow min \le u \le u \downarrow max$, $Cx \le d$
 - Unavoidable in almost real-world applications

Degrade the system performance

⊗ May make the system unstable

• How to deal with it? \Rightarrow Concept of robust invariant sets^[2]

[1] Tanaka et al., 2001 [2] Blanchini and Miani, 2008

• Control task: Design an input-unsaturated PDC controller

• Property 1: State constraints

Closed-loop system states remains in the polyhedral region

 $x \in \mathfrak{D} \downarrow x = \{x \in \mathbb{R} \uparrow n \downarrow x : M \downarrow (k) x \leq 1, k \in \{1, \dots, q\}\}$

• Property 2: Regional quadratic *a*-stability

When w=0, exponential convergence to the origin with a decay rate α

 $\mathbb{V}(x) < -2\alpha \mathbb{V}(x), \mathbb{V}(x) = x \uparrow T Px, P > 0$

• **Property 3:** $\mathcal{L} \downarrow \infty$ **performance**

When $w \neq 0$, the trajectories remain in the estimate domain of attraction and

 $z(t) \uparrow \top z(t) \leq \gamma, \forall w \in \mathcal{W} \downarrow \rho$

• Sector condition for control input saturation^[1]

Consider $K \downarrow i \in \mathbb{R} \uparrow n \downarrow u \times n \downarrow x$ and $G \downarrow i \in \mathbb{R} \uparrow n \downarrow u \times n \downarrow x$, $i \in \Omega \downarrow r$. Define $\psi(u) = u - sat(u)$

and $\mathfrak{D} \downarrow u = \{x \in \mathbb{R} \uparrow n \downarrow x : |\Sigma i = 1 \uparrow r \equiv \eta \downarrow i \ (\theta) (K \downarrow i(l) - G \downarrow i(l)) x | \le u \downarrow \max(l) \ , \ l \in \Omega \downarrow n \downarrow u \}$

If $x \in \mathfrak{D} \downarrow u$, then $\psi(u) \uparrow \top (\sum_{i=1}^{n} \eta \downarrow i (\theta) S \downarrow i) \uparrow -1 [\psi(u) - \sum_{i=1}^{n} \eta \downarrow i (\theta) G \downarrow i x] \leq 0$

Incorporated into Lyapunov stability condition

• And some other results on inclusion conditions $x \in D \downarrow x$, $x \in D \downarrow u$

[1] Nguyen et al., 2016

• How to design such a controller?

Theorem: If there exist X, S¹*i*, V¹*i*, X¹21*i*, ..., and positive scalars τ ¹, τ ¹, τ ¹2, γ such that

• Feedback control gains

 $K \downarrow i = V \downarrow i X \uparrow -1$, $i \in \{1, \dots, r\}$

Outline

• Context and challenges

2 Human-in-the-loop control design

- System modeling
- Description of the proposed method
- Control design

3 Illustrative experimental results

4 Concluding Remarks

Experimental setup: LAMIH-SHERPA interactive driving simulator

Test 1: Disturbance rejection (straight road, $v \downarrow x = 15 m/s$, $f \downarrow w = 1100 N$)

Case 1: Automatic ($T \downarrow d = 0$), Case 2: Manual ($T \downarrow c = 0$), Case 3: Shared control

- Similar steering torques
- Small tracking errors
- Only 50% driver's effort for Case 3
- Shared control without conflict

Test 2: Driving task with an adaptive level of assistance

Lane-keeping without driver-automation conflict

Many other tests and performance evaluation can be found here:

Anh-Tu Nguyen, Chouki Sentouh, Jean-Christophe Popieul, "Driver-Automation Cooperative Approach for Shared Steering Control under Multiple System Constraints: Design and Experiments", *IEEE Transactions on Industrial Electronics*, vol. 64, issue 5, pp. 3819-3830, 2017 [IF=7.168].

> INDUSTRIAL ELECTRONICS

Outline

• Context and challenges

2 Human-in-the-loop control design

- System modeling
- Description of the proposed method
- Control design
- **3** Illustrative experimental results

4 Concluding Remarks

Concluding Remarks

- **Conclusion:** Novel approach for vehicle shared driving control
 - Online adaptation of the control authority according to driver's activity
 - Takagi-Sugeno approach ⇒ driver's activity variable and vehicle speed variation
 - Consideration of system constraints to improve the control performance
 - Experimental validation with the SHERPA driving simulator and a human driver

• Current investigations

- Sensor reduction for shared control under system constraints
- Combined longitudinal-lateral shared control

THANK YOU FOR YOUR ATTENTION !

Robust Constrained Control for Driver-Automation Shared Driving of Intelligent Vehicles

<u>Anh-Tu Nguyen</u>, Chouki Sentouh and Jean-Christophe Popieul LAMIH UMR 8201 CNRS - University of Valenciennes, France

> **Journées Automatique et Automobile** Amiens, France, October 18-19, 2017

- Test 3: Emergency double lane change maneuver
 - Lateral position [m] Case 1: variable $\mu(\theta_{1})$ - Case 2: μ(θ_d)=1 -2∟ 30 40 70 50 60 80 90 Case1: variable $\mu(\theta_d)$ Torque [Nm] assistance driver -5∟ 30 90 50 40 60 70 80 10 assistance Case 2: $\mu(\theta_d)=1$ Torque [Nm] 5 river 1.5 saturation leve 0.5 −10<u>∟</u> ___0 90 40 50 60 70 80 Time [s]
- Case 1: *adaptive* authority allocation
- Case 2: *constant* authority allocation
- Small driver's effort with Case 1
- Control input saturation in Case 2